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Abstract

In this study, we explored the potential of multi-temporal SPOT-4 VEGETATION (VGT) sensor data for characterization of temperate and

boreal forests in Northeastern China. As the VGT sensor has a short-wave infrared (SWIR) band that is sensitive to vegetation, soil moisture

and leaf water content, the Normalized Difference Water Index (NDWI) was calculated in addition to the Normalized Difference Vegetation

Index (NDVI). A forest map of Northeast China was generated from an unsupervised classification of 25 10-day VGT composite data (NDVI

and NDWI) over the period of March 11–20, 1999 to November 11–20, 1999. Seven different forest categories were distinguished from the

1-km spatial resolution VGT data. The VGT forest map was compared to estimates of forest area derived from Landsat 7 Enhanced Thematic

Mapper (ETM+) images. There was a good agreement on spatial distribution and area of forest between the VGT product and the TM

product, however, the VGT product provided additional information on forest type. Analysis of NDVI and NDWI over the plant growing

season allows for the identification of distinct growth patterns between the different forest types. It is evident that VGT data can be used to

provide timely and detailed forest maps with limited ancillary data needed. The VGT-derived forest maps could be very useful as input to

biogeochemical models (particularly carbon cycle models) that require timely estimates of forest area and type.

D 2002 Published by Elsevier Science Inc.

1. Introduction

Northeastern China (Fig. 1) has abundant tree species

and a variety of forest types, including evergreen needleleaf

forest, deciduous needleleaf forest, deciduous broadleaf

forest, and mixed forests (Zheng, Xiao, Guo, & Howard,

2001). Human activities (e.g. forest clear-cutting, selective

logging, agricultural encroachment) and natural disturbance

(e.g. fire, insects) have resulted in substantial losses of the

old-growth forests and fragmentation in forest landscapes

(Shao et al., 1996; Chen, 2000; Chen, Zhang, Zhou, &

Chen, 2000; Liu, Kondoh, Tateishi, Takamura, & Takeuchi,

2001; Wang, Feng, & Ouyang, 2001). For instance, most of

the mixed broadleaf/Korean pine (Pinus koraiensis) forests

in Jilin and Liaoning Provinces have been replaced (planta-

tion-style) by faster-growing species such as larch (Larix

sp.), poplar (Populus sp.) and birch (Betula sp.) (Jiang et al.,

1999). Fang, Chen, Peng, Zhao, and Ci (2001) and Fang,

Wang, Liu, and Xu (1998) have shown that there is

considerable spatial variability in biomass carbon storage

and density among forest types in China. For example, the

larch forests of Northeast China tend to have higher carbon

densities than the oak forests (Fang et al., 1998; Jiang, Peng

et al., 1999). Recent carbon cycle studies have indicated

that the mid- to high-latitude forests of the Northern Hemi-

sphere may serve as a significant carbon sink (Schimel et

al., 2001).

Timely and accurate information on forest types and

areas at the regional scale is needed for natural resource

management, carbon cycle studies and modeling of bio-

geochemistry, hydrology and climate. Satellite-based

remote sensing products provide one option to meet those

data needs. A number of earlier studies have used Landsat

Thematic Mapper (TM) images to document forest types

and changes at Changbai Mountain, Jilin Province, where

an International Biosphere Reserve was established in

1979 (Shao et al., 1996; Zheng, Wallin, & Hao, 1997;

Liu, Kondoh et al., 2001). Because of frequent cloud cover

and the long re-visit time (16 days) of Landsat, it is

difficult to acquire cloud-free images for monitoring the

changes in forest types at short-term intervals (e.g. yearly).

Over the last two decades, numerous studies of large-scale

mapping of land cover and land use have explored data
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from the Advanced Very High Resolution Radiometer

(AVHRR) sensors that provide daily observations of the

Earth at 1- and 4-km spatial resolutions (Tucker, Town-

shend, & Goff, 1985; Goward, Tucker, & Dye, 1985;

Loveland, Merchant, & Brown, 1991; Loveland et al.,

2000; Zhu & Evans, 1994; Stone, Schlesinger, Houghton,

& Woodwell, 1994; Defries, Hansen, & Townshend, 1995;

Hansen, DeFries, Townshend, & Sohlberg, 2000; Liu,

Zhuang, Lou, & Xiao, 2001). Multi-temporal AVHRR

have also been used to map forest types in northeastern

China (Liu, Zhuang, & Ling, 1998). However, the AVHRR

sensors, originally designed for meteorological applica-

tions, have only two spectral channels (red and near

infrared) that are related to vegetation and phenology.

Recently, a new generation of space-borne optical sensors

designed for studying vegetation and land surfaces have

been launched, i.e. the VEGETATION (VGT) sensor

onboard the SPOT-4 satellite and the Moderate Resolution

Imaging Spectroradiometer (MODIS) onboard the Terra

(EOS AM-1) satellite. VGT and MODIS sensors have a

number of advantages over AVHRR, including more

spectral bands that are related to vegetation (see Section

2 for more details about the VGT sensor). Multi-temporal

VGT data have been used in the mapping of tropical

forests (Mayaux, Gond, & Bartholome, 2000), agriculture

in China (Xiao et al., in press(a), in press(b)) and alpine

snow and ice cover in Asia (Xiao, Moore, Qin, Shen, &

Boles, 2002; Xiao, Shen, & Qin, 2001).

In this study, we explored the potential of multi-tem-

poral VGT data for mapping of various forest types in

Northeastern China. The objective was twofold: (1) to

document the current status of forest types and areas in

Fig. 1. The elevation map of the study area that includes portions of China, Russia, Mongolia and the Korean Peninsula. The polygon map is the provincial

boundary map of China. The background is the Global Land One-Kilometer Base Elevation dataset (http://www.ngdc.noaaa.gov).
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northeastern China, using VGT data acquired in 1999; and

(2) to evaluate the potential of VGT data in identifying

various types of forests. The forests of Northeastern China

are similar to those of the Great Lakes region of North

America (Burger & Zhao, 1988; Barnes, Xu, & Zhao,

1992; Geng, Pastor, & Dewey, 1993), therefore, this study

would also help the efforts in mapping forests in North

America using VGT data, as part of the goal of global

mapping of forests. In addition, the resultant forest map

derived from this VGT image analysis can be used to

improve estimates of forest biomass and carbon storage in

Northeastern China, and to initialize simulations of pri-

mary productivity models that require estimates of forest

type distribution (Jiang, Apps, Zhang, Peng, & Woodard,

1999; Jiang, Peng et al., 1999).

2. VEGETATION image data and pre-processing

The VGT instrument is one of a new generation of

space-borne optical sensors that were designed for obser-

vations of vegetation and land surfaces (Saint, 2000). The

VGT instrument has four spectral bands: B0 (blue, 430–

470 nm), B2 (red, 610–680 nm), B3 (near infrared, 780–

890 nm) and SWIR (short-wave infrared, 1580–1750

nm), which are equivalent to Landsat Thematic Mapper

(TM) bands 1, 3, 4, and 5, respectively. The blue band is

primarily used for atmospheric correction. The SWIR

band is sensitive to soil moisture, vegetation cover and

leaf moisture content, and can improve the discrimination

of vegetation and other land covers. With a swath width

of 2250 km, VGT provides daily coverage of the globe at

1-km spatial resolution. Unlike scanner sensors (e.g.

AVHRR), the VGT instrument uses the linear-array tech-

nology and thus produces high-quality imagery at coarse

resolution with greatly reduced distortion. The SPOT-4

satellite carries both the VGT sensor and High Resolution

Visible and Infrared sensor (HRVIR); both of them use

the same geometric reference system and identical spectral

bands to facilitate multi-scale interpretation.

Three standard VGT products are available to users:

VGT-P (physical product), VGT-S1 (daily synthesis prod-

uct) and VGT-S10 (10-day synthesis product). The spectral

bands in the VGT-S1 products are estimates of ground

surface reflectance, as atmospheric corrections for ozone,

aerosols and water vapor have been applied to the VGT-P

images using the simplified method for atmospheric correc-

tion algorithm (Rahman & Dedieu, 1994). There are three

10-day composites for 1 month: days 1–10, days 11–20,

and day 21 to the last day of the month. VGT-S10 data are

generated by selecting the VGT-S1 pixels that have the

maximum Normalized Difference Vegetation Index (NDVI)

values within a 10-day period. The maximum NDVI value

composite (MVC) approach helps minimize the effect of

cloud cover and variability in atmospheric optical depth.

Fig. 2 includes three examples of VGT-S10 products, which

illustrate the ability of VGT-S10 data to sense the develop-

ment of the seasonal phenology of vegetation in northeast-

ern China. Twenty-seven VGT-S10 composites for the

period of March 1–10, 1999 to November 21–30, 1999

were acquired and subset for a study area of 1500 by 1800

km2 (Fig. 1).

Tucker (1980) suggested that the short-wave infrared

band (TM5) of Landsat TM was best suited for remote

sensing of plant canopy water content. Gao (1996) and

Jürgens (1997) proposed sensor-specific Normalized Differ-

ence Water Index (NDWI) for remote sensing of vegetation

liquid water, using near-infrared and short-wave infrared

reflectance values. In this study, both NDWI and NDVI

were calculated for each of the VGT-S10 products, using the

following equations:

NDWIVGT ¼ ðB3� SWIRÞ=ðB3þ SWIRÞ ð1Þ

NDVIVGT ¼ ðB3� B2Þ=ðB3þ B2Þ ð2Þ

Both NDVI and NDWI values are within a range of

� 1.0–1.0. For reduction of file sizes, the resultant floating-

point NDVI and NDWI values were rescaled to eight-bit

digital numbers between 3 and 253, using the same scaling

method developed by the NASA Pathfinder AVHRR Land

Project (PAL) for AVHRR-derived NDVI data from 1981 to

2000 (http://daac.gsfc.nasa.gov/CAMPAIGN_DOCS/

FTP_SITE/readmes/pal.html).

Although the MVC procedure eliminates most cloudy

pixels, some VGT-S10 products contain residual cloud

contamination that could adversely affect our analysis.

One approach to further reduce cloud cover in images is

to generate monthly composites of images by selecting

those pixels that have the maximum NDVI values within

a month. However, the resultant monthly composites might

not resolve large and fast changes in the temporal develop-

ment of vegetation greenness (e.g. green-up, senescence).

To facilitate interpretation of vegetation types, the original

10-day temporal resolution of the dataset needs to be kept.

We decided to identify and smooth those VGT-S10 pixels

that have clouds, using neighboring pixels in the time-series

data. The VGT-S10 product provides a status map file for all

pixels, including radiometric quality, clouds, snow/ice and

land/ocean. The first step of pre-processing uses the cloud

flag in the status map file. For pixel i at time t, if it is

described as a cloud pixel in the status map, we will use one

cloud-free pixel before time t (in most cases t� 1) and one

cloud-free pixel after time t (in most cases t + 1) to calculate

the average NDVI and NDWI values, and replace those

values at time t for pixel i. However, the cloud detection

algorithm used in producing the standard VGT products

does not detect all cloud cover, as illustrated by sudden

decreases of NDVI prior to senescence (Fig. 3a). Earlier

studies had developed the Best Index Slope Extraction

(BISE) technique for reducing the effects of cloud contam-

ination and atmospheric interference in seasonal NDVI time
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series from daily AVHRR data (White, Thornton, & Run-

ning, 1997; Reed et al., 1994; Viovy, Arino, & Belward,

1992). The BISE algorithm contains two main assumptions:

(1) NDVI is depressed by cloud and atmospheric contam-

ination, and (2) rapid and non-persistent increases or

decreases in NDVI are inconsistent with natural vegetation

growth. In this study, the second step of pre-processing for

removal of residual cloud cover is to examine NDVI values

at three time steps: t� 1, t, and t + 1. We calculated the

difference in NDVI values between time t� 1 and time t,

Fig. 2. Seasonal phenology of vegetation in northeastern China as illustrated by three 10-day VGT composites in 1999. Each image is a false color composite of

spectral bands: near infrared (B3), short-wave infrared (SWIR) and red (B2).
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and the difference in NDVI between time t + 1 and t,

respectively:

dNDVIt�1;t ¼ ðNDVIt�1 � NDVItÞ ð3Þ

dNDVIt;tþ1 ¼ ðNDVItþ1 � NDVItÞ ð4Þ

Adopting the method proposed by White et al. (1997), a

threshold of 20% decline in the NDVI value at time t was

adopted for identifying cloudy pixels. If dNDVIt� 1,t and

dNDVIt,t + 1 were at least a 20% decline from both

NDVIt� 1 and NDVIt + 1, respectively, it is assumed that

the pixel was affected by clouds. In these instances, NDVIt
and NDWIt values were replaced by the averaged NDVI and

NDWI values at time t� 1 and time t+ 1, respectively. We

applied the algorithm to smooth the NDVI and NDWI time-

series data over the period of March 11–20, 1999 to

November 11–20, 1999 (a total of 25 time periods; Fig.

3b). The NDVI and NDWI data for the periods of March 1–

10 and November 21–30 are the starting and ending points

in the time series and therefore were not corrected and not

used for image classification.

3. Method

3.1. Classification and interpretation

There are two general approaches for land cover classi-

fication: per-pixel binary (0 or 1) and sub-pixel unmixing

(percentage fractional cover within a pixel). Per-pixel binary

Fig. 3. Time series of NDVI and NDWI of a VGT forest pixel over the period of March 1–10 to November 21–30, 1999. (a) Before applying the smoothing

algorithm; (b) after applying the smoothing algorithm.
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approach is the most widely used method, including the

International Geosphere–Biosphere Programme (IGBP)

Global Land Cover Data dataset (DIScover) that was

derived from 1-km AVHRR data in 1992/1993 (Loveland

et al., 2000). In this study, we explored the potential and

limitations of the per-pixel binary approach using coarse-

resolution VGT data and fine-resolution land cover products

derived from Landsat images. The unsupervised classifica-

tion procedure (ISODATA) was used for image classifica-

tion, as it allows for the identification of all the important

spectral groupings without initially knowing which are

thematically significant (Cihlar et al., 1998). NDVI and

NDWI bands from March 11–20, 1999 to November 11–

20, 1999 (a total of 50 bands) were used as input to the

iterative ISODATA clustering algorithm. Forty spectral

clusters were generated with the following parameters:

convergence threshold (95%), maximum number of merge

pairs (2), minimum class standard deviation (1), minimum

number of pixels in a class (100), and maximum number of

iterations (10).

The hierarchical forest classification scheme is based on

leaf life-form (needleleaf and broadleaf) and leaf longevity

(evergreen and deciduous), and thus has the following

categories for the study area: evergreen needleleaf forest,

deciduous needleleaf forest, deciduous broadleaf forest, and

various mixed forests. For each of the forest categories,

identification of dominant tree species is required. To aid in

interpretation and labeling of the 40 spectral clusters, a

number of ancillary datasets were used, including the

1:1,000,000 Land Use Map of China (Wu, 1990), the Atlas

of Forestry in China (The Editorial Committee for the Atlas

of Forestry in China [ECAFC], 1990), and the Forests of

China (Wang, 1961). The Land Use Map of China has four

different forest classes in northeastern China (coniferous,

broadleaf, mixed, oak). The Atlas of Forestry in China

provides maps of forests and forest industry by province.

Wang (1961) described the boreal and temperate forests of

northeastern China and provided detailed descriptions of the

forest communities that exist, including tree species, under-

story vegetation, and plant communities of the forest floors.

Fig. 4. The spatial distribution of forest in northeastern China according to the National Land Cover Dataset (NLCD) that was derived from Landsat 7 ETM+

images in 1999 and 2000. The legend is percent fractional cover of forest within 1-km pixels in northeastern China.
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Vegetation distribution is related to elevation gradients,

therefore, we downloaded the Global Land One-Kilometer

Base Elevation dataset at the NOAA National Geophysical

Data Center (http://www.ngdc.noaa.gov/) and subset it for

the study area (Fig. 1). The digital elevation model was used

as an aid for interpretation and labeling of the spectral

clusters. In addition, summary statistics (e.g. mean, mini-

mum, maximum, standard deviation) of all the NDVI and

NDWI bands for individual spectral clusters were calculated

and compared for characterization of temporal NDVI and

NDWI dynamics of the 40 spectral clusters. A data matrix of

mean NDVI and NDWI values for the 40 spectral clusters

(50 bands� 40 clusters) was also constructed, and a dendro-

gram was generated as an additional aid for cluster inter-

pretation and labeling.

3.2. Accuracy assessment

Accuracy assessment for coarse-resolution (e.g. 1 km)

land cover maps poses a great challenge to the remote

sensing community, as the 1-km maps overestimate or

underestimate forest areas according to forest fragmenta-

tion and proportion (Mayaux & Lambin, 1997; Achard,

Eva, & Mayaux, 2001). As an alternative approach to field

surveys, fine-resolution images and derived land cover

maps have been used for validation of thematic maps.

For example, to validate the IGBP DISCover dataset, a

sample of Landsat TM and SPOT HRV images were used

(Scepan, 1999; Scepan, Menz, & Hansen, 1999). In this

study, although VGT images cover portions of China,

Russia, Mongolia, North Korea and South Korea (Fig.

1), accuracy assessment was restricted to China as we only

had a detailed and consistent dataset to support validation

within China.

Recently, the National Land Cover Project (supported by

the Chinese Academy of Sciences) completed the analysis

of Landsat 7 Enhanced Thematic Mapper (ETM+) images

acquired in 1999 and 2000 for China. Hundreds of ETM+

images were geo-referenced and ortho-rectified, using field-

collected ground control points and fine-resolution digital

elevation models. A classification system of 25 land cover

types was used in the project, including a ‘forest’ category

defined as natural or planted forests with a canopy cover of

greater than 30%. Visual interpretation and digitalization of

ETM+ images were conducted to generate a thematic map

of land use and land cover in China at a scale of 1:100,000.

The resultant vector National Land Cover Dataset (NLCD-

1999/2000) was converted into a gridded database at 1-km

resolution. The unique feature of this 25-layer gridded 1-km

database is that it still captures all of the land cover

information at the 1:100,000 scale by calculating percent

fractional cover within a 1-km pixel for individual land

cover types (Tang, 2000). Fig. 4 shows the spatial distribu-

tion of percent forests cover within 1-km pixels in north-

eastern China, according to the NLCD-1999/2000 dataset.

In this study, the 1-km resolution gridded ‘forest’ layer of

the NLCD dataset was used for accuracy assessment of the

VGT-based image classification.

4. Results

4.1. Forest classification map

Northeast China is home to a very diverse collection of

forest types, ranging from temperate broadleaf forests in the

south to boreal coniferous forests in the north. The forests are

widely distributed over mountainous terrain (e.g. Daxingan-

ling andXiaoxinganling Ranges), and have large variations in

species composition across latitudinal domains, elevation

gradients, and moisture gradients (Burger & Zhao, 1988;

Barnes et al., 1992; Geng et al., 1993; Richardson, 1990). At

low elevation, dominant tree species include Korean pine (P.

koraiensis Sied. & Zucc), five-needled white pine (P. strobes

L.), basswood (Tilia amurensis Rupr.), white oak (Quercus

mongolica Fishc. & Turz.), painted maple (Acer mono

Maxim.), and ash (Fraxinus mandshurica L.). At high

elevation, major tree species include spruce (Picea Koraien-

sis Nakai), fir (Abies nephrolepsis (Trautv.) Maxim), pine (P.

sylvestris var.mongolica), aspen (Populus davidiana Dode.),

and birch (Betula platyphylla Suk.). Deciduous coniferous

Larix forests, which are widely distributed in the most

northern part of the Northeastern China, include Larix

gmelinii, L. dahurica Turcz. and L. olgensis A. Henry.

In the VGT image classification, seven forest types were

identified and mapped for the study region (Fig. 5): decid-

uous needleleaf forest (DN), evergreen needleleaf forest

(EN), three types of deciduous broadleaf forest (DB) and

two types of mixed forests (DN/DB, and EN/DB). The

deciduous needleleaf forest, dominated by larch trees, has an

area of 216,785 pixels and is widely distributed in the far

north. Evergreen needleleaf forest, dominated by spruce, fir

and pine, has an area of 53,239 pixels and is largely

distributed in the northeastern part of the study area and

in mountainous areas. Oak-dominated deciduous broadleaf

forest (DB-o; 48,692 pixels) is largely distributed in the

south, while maple–birch–basswood-dominated broadleaf

forest (DB-m–b–b; 308,891 pixels) is widely distributed in

the eastern part of the study area. Birch-dominated decid-

uous broadleaf forest (DB-b; 179,089 pixels) occurs mostly

in the northern Daxinganling Range. Evergreen needleleaf

and deciduous broadleaf mixed forest (EN/DB; 124,879

pixels) is largely distributed in the eastern part of the study

area within an elevation gradient zone that is above decid-

uous broadleaf forest but below evergreen needleleaf forest

(Fig. 5). In comparison, deciduous needleleaf and deciduous

broadleaf mixed forest (DN/DB; 107,886 pixels) is largely

concentrated in the northwestern part of the study area,

where elevation is at an intermediate level and fire events

occur frequently. According to the VGT-derived forest map,

the total number of pixels for the entire study region is

estimated to be 1,039,461 Fig. 5).
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Aggregation and reporting of remote sensing products

at 1-km resolution to the administrative units (e.g. provin-

cial level) allows comparison with Chinese forest inven-

tory data (Ministry of Forestry, 1990, 1996). Using a

geographical information system, the provincial boundary

map of China was overlaid with the VGT-derived forest

map and the numbers of forest pixels within individual

provinces were counted. Table 1 summarizes the numbers

of forest pixels in the four provinces (Inner Mongolia,

Heilongjiang, Jilin and Liaoning) of the northeastern

China. According to the VGT-derived forest map, Hei-

longjiang has the largest number of forest pixels (212,930),

while Liaoning has the smallest number of forest pixels

(45,715). The sum of forest pixels for these four provinces

is 478,287 (Table 1). In the conventional per-pixel binary

(0 or 1) approach, a pixel is assumed to be 100% forest

area if it is classified as forest. Using that approach, the

VGT-derived forest map has a total forest area of 478,287

km2 in these four provinces (Table 1). Table 1 lists the

provincial-level estimates of forest area from the 4th forest

inventory during the period of 1989–1993, which was

organized and conducted by the Ministry of Forestry,

China (Ministry of Forestry, 1990, 1996; Zheng et al.,

2001). The total forest area (404,932 km2) of the four

provinces from the forest inventory data over the period of

1989–1993 is about 18% lower than the VGT-derived

estimate of the forest area (478,287 km2). The provincial

boundary map was also overlaid with the NLCD-1999/

2000 dataset at 1-km resolution. It is estimated that these

four provinces together have a total forest area 401,746

Fig. 5. Forest classification map derived from multi-temporal VGT-S10 images in 1999.
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km2 from the NLCD-1999/2000 dataset, which is approx-

imately 19% lower than the VGT-derived estimate of forest

area.

4.2. Accuracy assessment at pixel level for Northeastern

China

In the NLCD-1999/2000 dataset, there are 654,373

pixels (1-km2) that have 1% or more fractional cover of

forest, resulting in a total forest area of 423,332 km2 for

the Chinese portion of the study area (Fig. 4). The

frequency distribution of those NLCD pixels is skewed

to the right (Fig. 6). About 77% of the NLCD pixels has a

fractional forest cover of 30% or more within a 1-km

pixel, accounting for 95% of the total forest area. About

60% of the NLCD pixels has a fractional forest cover of

60% or more within a 1-km pixel, accounting for 83% of

the total forest area.

In the VGT-derived forest map, there are 508,621 forest

pixels in the Chinese portion of the study area: 4632 pixels

of evergreen needleleaf forest, 54,850 pixels of deciduous

needleleaf forest, 104,725 pixels of birch-dominated decid-

uous broadleaf forest, 211,336 pixels of maple–birch–bass-

wood dominated deciduous broadleaf forest, 35,907 pixels

of oak-dominated deciduous broadleaf forest, 40,182 pixels

of mixed forest (EN/DB), and 56,989 pixels of mixed forest

(DN/DB). The seven forest types were combined into one

forest layer in order to compare with the NLCD-1999/2000

dataset that does not differentiate forest types. The VGT-

derived forest map was overlaid with the NLCD-1999/2000

dataset to determine the spatial agreement of forest pixels

between these two datasets.

As the NLCD-1999/2000 dataset provides estimates for-

est cover within 1-km2 pixels, the conventional pixel-based

accuracy assessment (spatial agreement, commission error,

omission error) will vary depending upon the threshold

(%forest cover within 1-km pixels) used to define forest

pixels in the NLCD dataset. For simplicity and illustrative

purposes, we selected all NLCD pixels that have 1% or more

fractional forest cover within 1-km2 for pixel-based accuracy

assessment. The use of a low definition of forest ( > 1%) from

the NLCD dataset is likely to provide lower estimates of

pixel-based accuracy assessment at 1-km resolution. Accord-

ing to the resultant map, 457,841 VGT-derived forest pixels

correspond with those NLCD pixels that have 1% or more

fractional cover of forest within 1-km2 pixels. Thus, the

pixel-based spatial agreement in forest pixels between the

VGT-derived forest map (457,841) and NLCD-1999/2000

dataset (654,373) is about 70%. The pixel-based commis-

sion error is about 10% (508,621� 457,841 = 50,780 pix-

els), while the pixel-based omission error is about 30%

(654,373� 457,841 = 197,532 pixels).

The area-weighted spatial agreement between the VGT-

derived forest map and the NLCD-1999/2000 dataset should

provide a more realistic and overall accuracy assessment,

although it does not give estimates of commission and

omission errors. The frequency distribution of VGT-derived

forest pixels was calculated in reference to fractional cover

of forest from the NLCD-1999/2000 dataset (Fig. 6).

According to the histogram of VGT-derived forest pixels,

90% of the VGT-derived forest pixels (457,841) corre-

sponds with those NLCD pixels that have a fractional forest

cover of 30% or larger within 1-km pixels, and 75% of the

VGT-derived forest pixels corresponds with those NLCD

pixels that have a fractional forest cover of 60% or more

(Fig. 6a). The cumulative area of forest for all the VGT

forest pixels was calculated, using the fractional forest cover

provided by the NLCD-1999/2000 dataset (Fig. 6b). The

cumulative curves of forest area for both the NLCD pixels

and VGT forest pixels are highly correlated (Fig. 6a). It is

estimated that all the VGT forest pixels (457,841) cover a

total forest area of 352,179 km2, accounting for 83% of the

total forest area (423,332 km2) estimated by the NLCD-

1999/2000 dataset, which is higher than the pixel-based

spatial agreement (70%) between the NLCD pixels

(654,373) and VGT forest pixels (457,841).

4.3. Characterization of seasonal dynamics of forests

Summary statistics of the NDVI and NDWI time series

for all the seven forest types were calculated for character-

ization of seasonal dynamics of forest types (Fig. 7). The

seasonal dynamics of NDVI time series (Fig. 7a) revealed

only slight differences in NDVI values during the peak

plant-growing season (July and August) among the seven

forest types, but relatively large differences existed at the

Table 1

Provincial-level estimates of forest area (km2) from the VGT analysis,

NLCD-1999/2000, and forest statistics in 1993

Forest type Inner

Mongolia

Heilongjiang Jilin Liaoning Total

Evergreen

needleleaf (EN)

618 2098 1914 2 4632

Deciduous

needleleaf (DN)

27,161 27,160 486 43 54,850

Deciduous

broadleaf (DB-b)

44,768 57,836 2022 89 104,715

Deciduous

broadleaf

(DB-m–b–b)

21,260 81,587 67,143 24,334 194,324

Deciduous

broadleaf (DB-o)

107 28 1610 20,950 22,695

Mixed (EN/DB) 57 22,551 17,207 270 40,085

Mixed (DN/DB) 34,278 21,670 1011 27 56,986

Total VGT

forest area

(per-pixel

estimate)

128,249 212,930 91,393 45,715 478,287

Total NLCD

forest area

116,112 175,742 71,191 38,701 401,746

Total NFRS

forest area

140,657 161,620 63,469 39,186 404,932
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beginning (March–April) and the end (October–Novem-

ber) of the study period. In March, evergreen needleleaf

forest and the mixed forest with evergreen component (EN/

DB) had the highest NDVI values (f 0.20 and above),

while deciduous needleleaf forest and deciduous broadleaf

forests (DB-b, DB-m–b–b) had the lowest NDVI values

(f 0.10 and below). A seasonal NDVI development curve

(Fig. 7a) is an indicator of greenness of vegetation, and has

been widely used to define the starting point, ending point

and length of plant growing seasons. Myneni, Tucker, Asrar,

& Keeling (1998) used a threshold of 0.25 NDVI to define

plant growing season in the northern latitudes. The decid-

uous forest types in our study area differed in the dates they

surpassed and dropped below the 0.25 NDVI (Table 2).

Using the 0.25 NDVI threshold, deciduous needleleaf forest

and the mixed deciduous forest (DN/DB) have the shortest

growing season (from April 21–30 to October 21–30),

followed by birch-dominated deciduous broadleaf forest

(DB-b, April 11–20 to October 21–30), maple–birch–

basswood-dominated deciduous broadleaf forest (DB-m–

b–b, April 11–20 to November 21–30) and oak-dominated

deciduous broadleaf forest (DB-o, April 11–20 to Novem-

ber 21–30).

While the NDVI development curves of the seven forest

types all have a bell shape (Fig. 7a), the seasonal dynamics

of the NDWI time series have different shapes characterized

by the ‘‘troughs’’ in the spring and fall seasons (Fig. 7b).

The short-wave infrared (SWIR) band is sensitive to vege-

Fig. 6. Histograms of forest pixels from the NLCD-1999/2000 dataset and the VGT-derived forest map. (a) Number of pixels (pixel-based spatial agreement);

and (b) area of forest (area-weighted spatial agreement).

X. Xiao et al. / Remote Sensing of Environment 82 (2002) 335–348344



tation cover, leaf moisture content and soil moisture. In mid-

March, only oak-dominated deciduous broadleaf forest

(DB-o) had negative NDWI values, while the other six

forest types have positive NDWI values, mostly attributed to

soil moisture from snow cover and melting snow water (Fig.

7b). The NDWI time series indicates that there were large

differences between those forest types with evergreen nee-

dleleaf trees and those forest types with deciduous trees in

mid-spring and mid-fall seasons (Fig. 7b). By late April to

early May, most of the snow cover had melted, and NDWI

values were positive and highest for evergreen needleleaf

forest, but negative and lowest for the deciduous broadleaf

forests (Fig. 7b). The observed difference in late spring

NDWI values can be attributed to differences in leaf

moisture content of the tree canopy between evergreen

needleleaf species and deciduous broadleaf species. In late

April to early May, evergreen needleleaf trees still have

green leaves and abundant leaf water, and surface reflec-

tance in the near-infrared (NIR) band is greater than surface

reflectance in the SWIR band, resulting in positive NDWI

values. By comparison, spring-time deciduous broadleaf

trees have a mixed canopy of green leaves and woody plant

material (which contains little water), with surface NIR

reflectance less than SWIR reflectance, resulting in negative

Fig. 7. Seasonal dynamics of mean NDVI (a) and NDWI (b) values over the period of March 1–10 to November 21–30, 1999 for the seven forest types in the

study area.
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NDWI values. Similar patterns are also observed in October,

when deciduous broadleaf trees began to experience sen-

escence and losses of leaves (Fig. 7b). The NDWI time

series also indicates that there were distinct differences

between some of the deciduous broadleaf forest categories,

specifically the oak-dominated and birch-dominated decid-

uous broadleaf forests (Fig. 7b). The oak-dominated broad-

leaf forests occur primarily in the southern part of the study

area (Fig. 5) and are characteristic of the temperate mixed

hardwood forest (Wang, 1961). Birch-dominated forests are

characteristic of the boreal forest and are located in the

northern portions of Inner Mongolia and Heilongjiang

Provinces (Fig. 5). Deciduous broadleaf forest types differ

in the first time that NDWI values were positive in the

spring season and were negative in the fall season (Table 2).

Phenology of deciduous forest is characterized by green-

up in spring and senescence in fall. In the spring, NDVI may

indicate when the green-up process starts and NDWI may

indicate when the green-up process ends, corresponding to

an observable process from fully senescent to fully green

vegetation canopy. In the fall, NDWI may indicate when the

senescence process begins and NDVI may indicate when the

senescence process ends, corresponding to an observable

process from fully green to fully senescent vegetation

canopy. The three types of deciduous broadleaf forests in

our study area all exhibit unique green-up and senescence

patterns (Table 2).

5. Discussion

The analyses of VGT-derived NDVI and NDWI data from

March to November 1999 highlight significant seasonal

differences among the various forest types in the study area.

The VGT-derived NDVI time series is very useful for

separating those forests that are dominated by evergreen tree

species from forests that are dominated by deciduous tree

species. This is consistent with earlier works that used

AVHRR-derived NDVI time-series data for land cover map-

ping at large spatial scales (Tucker et al., 1985; Goward et al.,

1985; Loveland et al., 1991, 2000; Zhu & Evans, 1994; Stone

et al., 1994; Defries et al., 1995; Defries & Townshend, 1994;

Liu et al., 1998; Hansen et al., 2000). VGT-derived NDWI

time series provides additional and unique information on

forest types and dynamics. Therefore, NDVI and NDWI time

series complement each other and provide an improved and

comprehensive description of forest types and phenology.

Note that bi-directional reflectance distribution function

(BRDF) of the land surface was not taken into consideration

in pre-processing of VGT-S10 data, which may introduce

some uncertainty in forest cover classification based on the

VGT-S10 data. The BRDF can be used to compare observa-

tions obtained at different viewing angles or to standardize

observations to a common geometry (Hu, Lucht, Li, &

Strahler, 1997). Therefore, further studies are needed to

incorporate the BRDF corrections into pre-processing of

VGT-S10 data and to assess the effect of BRDF on forest

cover characterization at large spatial scales.

We used both NDVI and NDWI time series to construct a

general picture of phenology of forests in the study area.

Previously, AVHRR-derived NDVI data have been used to

define the length of temperate forest growing seasons, using

NDVI threshold values ranging from 0.25 (Myneni et al.,

1998) to 0.45 (Jenkins, Braswell, Frolking, & Aber, in press).

The VGT-derived NDVI and NDWI time series suggest that

the 0.25 NDVI threshold is appropriate for the onset of

greenness development of deciduous forest types in north-

eastern China. In addition to information on starting and

ending dates of plant growing season, it is important to

quantify how long it takes for forests to complete the

green-up process in spring and senescence process in fall.

In this study, we proposed a NDVI- and NDWI-based scheme

for quantifying the lengths of the green-up process in spring

and the senescence process in fall. However, we have no field

observation data from 1999 to test the hypothesis, and there-

fore, field studies are needed to measure forest canopy

dynamics (proportions of senescent vegetation and green

vegetation) over time in the spring and fall seasons. The

10-day composite data (VGT-S10) are generated by selection

of those pixels of maximum NDVI values within a 10-day

period. Using daily VGT data for phenological analysis

would provide more accurate information on the dates of

the green-up and senescence processes.

For forest classification using medium- to coarse-reso-

lution images and the per-pixel binary approach, accuracy

assessment of the resultant forest maps is critical and

challenging due to the sub-pixel heterogeneity of the land

surface (a mixture of tree, shrub, crop, soil, water, etc.).

Accuracy assessment is usually done at three spatial scales:

(1) field-based point survey data (micro-scale); (2) fine-

resolution space-borne remotely sensed data (e.g. Landsat

TM, SPOT and IKONOS) and/or aerial photos (medium

scale) and (3) forest inventory data across large spatial

domains (macro-scale). Field surveys require collection of

Table 2

Dates of green-up process and senescence process of deciduous forests,

according to the NDVI and NDWI thresholds from 10-day VGT composite

data over the period of March 1–10, 1999 to November 21–30, 1999

Forest type Green-up process

in spring

Senescence process

in fall

NDVI>0.25 NDWI>0.0 NDWI< 0.0 NDVI < 0.25

Deciduous

needleleaf (DN)

4/21–30 5/21–30 10/1–10 11/1–10

Mixed forest

(DN/DB)

4/21–30 5/21–30 10/1–10 11/1–10

Deciduous

broadleaf (DB-b)

4/11–20 5/21–30 10/1–10 11/1–10

Deciduous

broadleaf

(DB-m–b–b)

4/11–20 5/11–20 10/11–20 11/21–30

Deciduous

broadleaf (DB-o)

4/11–20 5/1–10 10/11–20 11/21–30
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a large sample of field sites and are widely used for

validation of TM-derived forest maps, however, they are

usually constrained by limited resources and time. For

validation of the AVHRR-derived global land cover dataset

(IGBP DIScover), samples of Landsat TM- and SPOT-

derived maps were used (Scepan, 1999; Scepan et al.,

1999). In this study, we used the 1:100,000 scale land cover

dataset derived from Landsat 7 ETM+ images acquired in

1999/2000 for validation, which is consistent in image

acquisition time and spatial coverage with the VGT images

we analyzed. Accuracy assessment of forest maps at

medium- to coarse-spatial resolution is also affected by

the legend of the classification scheme. For example, the

Land Cover Classification Scheme developed by IGBP for

global-scale land cover mapping is widely used, and

includes five categories of forest: evergreen needleleaf

forest, evergreen broadleaf forest, deciduous needleleaf

forest, deciduous broadleaf forest and mixed forest. Its

description for forest is ‘‘land dominated by trees with a

percent canopy cover >60% and height exceeding 2 meters’’

(Scepan, 1999). For large-scale forest cover mapping, it is

difficult to obtain estimates of percent tree canopy cover,

and it requires a large sample of very-fine-resolution aerial

photos or space-borne images (e.g. 1 or 4 m IKONOS).

Landsat TM and ETM+ images at 30-m spatial resolution

provide an alternative data source for estimating proportion

of land cover types within 1-km pixels (Xiao et al., 2002a).

In this study, the NLCD-1999/2000 dataset (1:100,000

scale) allows us to evaluate the VGT-derived forest map at

a large spatial scale.

The results of this VGT image analysis demonstrate the

potential of multi-temporal VGT images for identifying and

mapping various forest types in temperate and boreal zones.

Dynamic monitoring of forests in northeast China must

satisfy the following criteria: (a) timely data acquisitions (to

detect the frequent disturbances that affect the study area),

(b) spatially adequate (the spatial resolution must be suffi-

cient to detect most of the disturbances that occur), (c)

species sensitive (because carbon densities differ greatly

among forest types). Although the NLCD-1999/2000 data-

set provides a reliable estimate of total forested area, no

details are provided regarding the type of forests present,

due to the very low probability of acquiring multi-season

cloud-free ETM+ images for a study area within 1 to 2

years. Therefore, an integrated mapping system that uses

both multi-temporal medium- to coarse-resolution images

(e.g. VGT and MODIS) and infrequent fine-resolution

images (e.g. Landsat 7 ETM+) would have the potential

to realize dynamic monitoring of forests across various

spatial scales from landscape to the globe.
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